Green Progress

Alternative Energy

Quantum Secrets of Photosynthesis Revealed

Through photosynthesis, green plants and cyanobacteria are able to transfer sunlight energy to molecular reaction centers for conversion into chemical energy with nearly 100-percent efficiency. Speed is the key - the transfer of the solar energy takes place almost instantaneously so little energy is wasted as heat. How photosynthesis achieves this near instantaneous energy transfer is a long-standing mystery that may have finally been solved.

A study led by researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) at Berkeley reports that the answer lies in quantum mechanical effects. Results of the study are presented in the April 12, 2007 issue of the journal Nature.

"We have obtained the first direct evidence that remarkably long-lived wavelike electronic quantum coherence plays an important part in energy transfer processes during photosynthesis," said Graham Fleming, the principal investigator for the study. "This wavelike characteristic can explain the extreme efficiency of the energy transfer because it enables the system to simultaneously sample all the potential energy pathways and choose the most efficient one."

Fleming is the Deputy Director of Berkeley Lab, a professor of chemistry at UC Berkeley, and an internationally acclaimed leader in spectroscopic studies of the photosynthetic process. In a paper entitled, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, he and his collaborators report the detection of "quantum beating" signals, coherent electronic oscillations in both donor and acceptor molecules, generated by light-induced energy excitations, like the ripples formed when stones are tossed into a pond.

Electronic spectroscopy measurements made on a femtosecond (millionths of a billionth of a second) time-scale showed these oscillations meeting and interfering constructively, forming wavelike motions of energy (superposition states) that can explore all potential energy pathways simultaneously and reversibly, meaning they can retreat from wrong pathways with no penalty. This finding contradicts the classical description of the photosynthetic energy transfer process as one in which excitation energy hops from light-capturing pigment molecules to reaction center molecules step-by-step down the molecular energy ladder.

"The classical hopping description of the energy transfer process is both inadequate and inaccurate," said Fleming. "It gives the wrong picture of how the process actually works, and misses a crucial aspect of the reason for the wonderful efficiency."

Co-authoring the Nature paper with Fleming were Gregory Engel, who was first author, Tessa Calhoun, Elizabeth Read, Tae-Kyu Ahn, Tom

More Alternative Energy Articles

Department of Energy to Train 75,000 Solar Workers

First Hybrid-Flywheel Energy Storage Plant in Europe announced in Midlands

World's Largest Solar Thermal Power Project at Ivanpah Achieves Commercial Operation

NTU Scientists Make Breakthrough Solar Technology

Wireless Devices Go Battery-Free Using "Ambient Backscatter" from TV and Cellular Transmissions

Harvesting Electricity from the Greenhouse Gas Carbon Dioxide

Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S.

University Researcher Making Rechargeable Batteries with Layered Nanomaterials

Vestas 8 MW Offshore Wind Turbine Could Power Up To 3200 Homes

Urban Green Energy and GE Unveil the Sanya Skypump, an Electric-Vehicle Charging Station Equipped with Wind and Solar Power

even more articles...

Suggest an Article for Green Progress

Green Progress :: Green Technology and Environmental Science News
Green Progress is an EcoMethods™ sustainability project. Copyright © 2005 - 2018 Green Progress. All rights reserved.